A new class of semiparametric semivariogram and nugget estimators
Patrick S. Carmack,
Jeffrey S. Spence,
William R. Schucany,
Richard F. Gunst,
Qihua Lin and
Robert W. Haley
Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1737-1747
Abstract:
Several authors have proposed nonparametric semivariogram estimators. Shapiro and Botha (1991) did so by application of Bochner’s theorem and Cherry et al. (1996) further investigated this technique where it performed favorably against parametric estimators even when data were generated under the parametric model. While the former makes allowances for a prescribed nugget and the latter outlines a possible approach, neither of these demonstrate nugget estimation in practice, which is essential to spatial modeling and proper statistical inference. We propose a modified form of this method, which admits practical nugget estimation and broadens the basis. This is achieved by a simple change to the basis and an appropriate restriction of the node space as dictated by the first root of the Bessel function of the first kind of order ν. The efficacy of this new unsupervised semiparametric method is demonstrated via application and simulation, where it is shown to be comparable with correctly specified parametric models while outperforming misspecified ones. We conclude with remarks about selecting the appropriate basis and node space definition.
Keywords: Unsupervised brain imaging; Nonparametric; Bessel basis; Isotropic; Node space; Regular lattice; Negative definiteness (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003744
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1737-1747
DOI: 10.1016/j.csda.2011.10.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().