EconPapers    
Economics at your fingertips  
 

Constrained spanning tree algorithms for irregularly-shaped spatial clustering

Marcelo Azevedo Costa, Renato Martins Assunção and Martin Kulldorff

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1771-1783

Abstract: Spatial clustering methodologies that are capable of detecting and delineating irregular clusters can provide information about the geographical spread of various diseases under surveillance. This paper proposes and compares three spatial scan statistics designed to detect clusters with irregular shapes. The proposed methods use geographical boundary information to construct a graph in which a cluster growing process is performed based on likelihood function maximization. Constraints on cluster shape are imposed through early stopping, a double connection requirement and a maximum linkage criteria. The methods are evaluated using simulated data sets with either circular or irregular clusters, and compared to the circular and elliptic scan statistics. Results show that for circular clusters, the standard circular scan statistic is optimal, as expected. The double connection, elliptic maximum linkage scan statistics also achieve good results. For irregularly-shaped clusters, the elliptic, maximum linkage and double connected scan statistics are optimal for different cluster models and by different evaluation criteria, but the circular scan statistic also performs well. If the emphasis is on statistical power for cluster detection, the simple circular scan statistic is attractive across the board choice. If the emphasis is on the accurate determination of cluster size, shape and boundaries, the double connected, maximum linkage and elliptical scan statistics are often more suitable choices. All methods perform well though, with the exception of the unrestricted dynamic minimum spanning tree scan statistic and the early stopping scan statistic, which we do not recommend.

Keywords: Spatial statistics; Scan statistics; Cluster detection (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311003951
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1771-1783

DOI: 10.1016/j.csda.2011.11.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1771-1783