EconPapers    
Economics at your fingertips  
 

Adaptive combination of dependent tests

Joseph Sexton, Rune Blomhoff, Anette Karlsen and Petter Laake

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1935-1943

Abstract: The construction of a multivariate two sample test is considered. An attractive approach to this problem, for instance when the data contain missing values or the number of variables is large, is to form an overall test by combining the componentwise test statistics. This can be done via their p-values or some other transformation. An important problem is how to perform the combination, as the relative power of a given combination will depend on the unknown true alternative. Recently, an approach has been proposed that makes use of the data to identify an appropriate combination. The method forms a pool of potential combinations of the componentwise p-values, setting the overall test statistic to the minimum p-value across the pool. One drawback of the approach, however, is that it does not utilize dependence between the componentwise tests, and thus potentially ignores valuable information. This issue is addressed, and two approaches are described that make use of the data to (1) determine which tests to combine; and (2) how best to utilize the between test statistic dependence. Simulations show that the proposed methods can lead to a substantial increase in power. An application to a dietary intervention study is given.

Keywords: Adaptive combination; Dependent tests; Multivariate two-sample test; Permutation; P-value combination (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311004166
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1935-1943

DOI: 10.1016/j.csda.2011.11.018

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1935-1943