EconPapers    
Economics at your fingertips  
 

Improving the efficiency of individualized designs for the mixed logit choice model by including covariates

M. Crabbe and M. Vandebroek

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 2059-2072

Abstract: Recent research shows that the inclusion of choice related demo- and sociographics in discrete choice models aids in modeling the choice behavior of consumers substantially. However, the increase in efficiency gained by accounting for covariates in the design of a choice experiment has thus far only been demonstrated for the conditional logit choice model. Previous findings are extended by using covariates in the construction of individualized Bayesian D-efficient designs for the mixed logit choice model. A simulation study illustrates how incorporating covariates affecting choice behavior yields more efficient designs and more accurate estimates and predictions at the individual level. Moreover, it is shown that the possible loss in design efficiency and therefore in estimation and prediction accuracy from including choice unrelated respondent characteristics is negligible.

Keywords: Covariate; Discrete choice experiment; Mixed logit choice model; Individual efficient design; Hierarchical Bayes estimation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311004506
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:2059-2072

DOI: 10.1016/j.csda.2011.12.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:2059-2072