EconPapers    
Economics at your fingertips  
 

Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm

M. Delattre and M. Lavielle

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 2073-2085

Abstract: Mixed hidden Markov models have been recently defined in the literature as an extension of hidden Markov models for dealing with population studies. The notion of mixed hidden Markov models is particularly relevant for modeling longitudinal data collected during clinical trials, especially when distinct disease stages can be considered. However, parameter estimation in such models is complex, especially due to their highly nonlinear structure and the presence of unobserved states. Moreover, existing inference algorithms are extremely time consuming when the model includes several random effects. New inference procedures are proposed for estimating population parameters, individual parameters and sequences of hidden states in mixed hidden Markov models. The main contribution consists of a specific version of the stochastic approximation EM algorithm coupled with the Baum–Welch algorithm for estimating population parameters. The properties of this algorithm are investigated via a Monte-Carlo simulation study, and an application of mixed hidden Markov models to the description of daily seizure counts in epileptic patients is presented.

Keywords: Nonlinear mixed effects model; SAEM algorithm; Forward backward algorithm; Epileptic seizures count (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100452X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:2073-2085

DOI: 10.1016/j.csda.2011.12.017

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:2073-2085