A goodness-of-fit test for parametric models based on dependently truncated data
Takeshi Emura and
Yoshihiko Konno
Computational Statistics & Data Analysis, 2012, vol. 56, issue 7, 2237-2250
Abstract:
Suppose that one can observe bivariate random variables (L,X) only when L≤X holds. Such data are called left-truncated data and found in many fields, such as experimental education and epidemiology. Recently, a method of fitting a parametric model on (L,X) has been considered, which can easily incorporate the dependent structure between the two variables. A primary concern for the parametric analysis is the goodness-of-fit for the imposed parametric forms. Due to the complexity of dependent truncation models, the traditional goodness-of-fit procedures, such as Kolmogorov–Smirnov type tests based on the Bootstrap approximation to null distribution, may not be computationally feasible. In this paper, we develop a computationally attractive and reliable algorithm for the goodness-of-fit test based on the asymptotic linear expression. By applying the multiplier central limit theorem to the asymptotic linear expression, we obtain an asymptotically valid goodness-of-fit test. Monte Carlo simulations show that the proposed test has correct type I error rates and desirable empirical power. It is also shown that the method significantly reduces the computational time compared with the commonly used parametric Bootstrap method. Analysis on law school data is provided for illustration. R codes for implementing the proposed procedure are available in the supplementary material.
Keywords: Central limit theorem; Empirical process; Truncation; Maximum likelihood; Parametric bootstrap; Shrinkage estimator (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000023
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:7:p:2237-2250
DOI: 10.1016/j.csda.2011.12.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().