Classification of image pixels based on minimum distance and hypothesis testing
Santosh Ghimire and
Haiyan Wang
Computational Statistics & Data Analysis, 2012, vol. 56, issue 7, 2273-2287
Abstract:
In this article, we introduce a new method of image pixel classification. Our method is a nonparametric classification method which uses combined evidence from the multiple hypothesis testings and minimum distance to carry out the classification. Our work is motivated by the test-based classification introduced by Liao and Akritas (2007). We focus on binary and multiclass classification of image pixels taking into account both equal and unequal prior probability of classes. Experiments show that our method works better in classifying image pixels in comparison with some of the standard classification methods such as linear discriminant analysis, quadratic discriminant analysis, classification tree, the polyclass method, and the Liao and Akritas method. We apply our classifier to perform image segmentation. Experiments show that our test-based segmentation has excellent edge detection and texture preservation property for both gray scale and color images.
Keywords: Image processing; Image classification; Hypothesis testing; Minimum distance; Image segmentation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000072
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:7:p:2273-2287
DOI: 10.1016/j.csda.2012.01.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().