Root selection in normal mixture models
Byungtae Seo and
Daeyoung Kim
Computational Statistics & Data Analysis, 2012, vol. 56, issue 8, 2454-2470
Abstract:
Finite mixtures of normal distributions are attractive in identifying the underlying group structure in the data. However, it is a challenging task to do statistical inference in normal mixture models using the method of maximum likelihood, due to the unbounded likelihood and the existence of multiple roots to the likelihood equation including a so-called spurious root. In this article we propose a new likelihood-based method for selecting a statistically reasonable root when there exist multiple roots of the likelihood equation for a finite normal mixture model. We first prove that our proposed methodology can choose a root to the mixture likelihood equation with consistency. We then show, by simulation studies and real examples, that the proposed methods can greatly reduce the risk of choosing problematic roots that have the same features as spurious roots.
Keywords: Consistency; Maximum likelihood; Normal mixture; Singularity; Spurious local maximizer (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731200062X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:8:p:2454-2470
DOI: 10.1016/j.csda.2012.01.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().