Mixtures of weighted distance-based models for ranking data with applications in political studies
Paul H. Lee and
Philip Yu
Computational Statistics & Data Analysis, 2012, vol. 56, issue 8, 2486-2500
Abstract:
Analysis of ranking data is often required in various fields of study, for example politics, market research and psychology. Over the years, many statistical models for ranking data have been developed. Among them, distance-based ranking models postulate that the probability of observing a ranking of items depends on the distance between the observed ranking and a modal ranking. The closer to the modal ranking, the higher the ranking probability is. However, such a model assumes a homogeneous population, and the single dispersion parameter in the model may not be able to describe the data well. To overcome these limitations, we formulate more flexible models by considering the recently developed weighted distance-based models which can allow different weights for different ranks. The assumption of a homogeneous population can be relaxed by an extension to mixtures of weighted distance-based models. The properties of weighted distance-based models are also discussed. We carry out simulations to test the performance of our parameter estimation and model selection procedures. Finally, we apply the proposed methodology to analyze synthetic ranking datasets and a real world ranking dataset about political goals priority.
Keywords: Ranking data; Distance-based models; Mixtures models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000679
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:8:p:2486-2500
DOI: 10.1016/j.csda.2012.02.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().