EconPapers    
Economics at your fingertips  
 

Bayesian sample size determination for binary regression with a misclassified covariate and no gold standard

Daniel P. Beavers and James Stamey

Computational Statistics & Data Analysis, 2012, vol. 56, issue 8, 2574-2582

Abstract: Covariate misclassification is a common problem in epidemiology, genetics, and other biomedical areas. Because this form of misclassification is known to bias estimators, accounting for it at the design stage is of high importance. In this paper, we extend on previous work applied to response misclassification by developing a Bayesian approach to sample size determination for a covariate misclassification model with no gold standard. Our procedure considers both conditionally independent tests and tests in which dependence exists between classifiers. We specifically consider a Bayesian power criterion for the sample size determination scheme, and we demonstrate the improvement in model power for our dual classifier approach compared to a naïve single classifier approach.

Keywords: Logistic regression; Misclassification; Bias; Sample size; Covariate (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000965
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:8:p:2574-2582

DOI: 10.1016/j.csda.2012.02.014

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2574-2582