Adaptive LASSO for general transformation models with right censored data
Jianbo Li and
Minggao Gu
Computational Statistics & Data Analysis, 2012, vol. 56, issue 8, 2583-2597
Abstract:
In this paper, we consider variable selection for general transformation models with right censored data and propose a unified procedure for both variable selection and estimation. We conduct the proposed procedure by maximizing penalized log-marginal likelihood function with Adaptive LASSO penalty (ALASSO) on regression coefficients. Two main advantages of this procedure are as follows: (i) the penalties can be assigned to regression coefficients adaptively by data according to the importance of corresponding covariates; (ii) it is free of baseline survival function and censoring distribution. Under some regular conditions, we show that the penalized estimates with ALASSO are n-consistent and enjoy oracle properties. Some simulation examples and Primary Biliary Cirrhosis Data application illustrate that our proposed procedure works very well for moderate sample size.
Keywords: General transformation models; Penalized log-marginal likelihood; ALASSO; SCAD; LASSO; Consistency; Oracle (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001053
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:8:p:2583-2597
DOI: 10.1016/j.csda.2012.02.023
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().