Mantel–Haenszel estimators of odds ratios for stratified dependent binomial data
Thomas Suesse and
Ivy Liu
Computational Statistics & Data Analysis, 2012, vol. 56, issue 9, 2705-2717
Abstract:
A standard approach to analyzing n binary matched pairs usually represented in n 2×2 tables is to apply a subject-specific model; for the simplest situation it is the so-called Rasch model. An alternative population-averaged approach is to apply a marginal model to the single 2×2 table formed by n subjects. For the situation of having an additional stratification variable with K levels forming K 2×2 tables, standard fitting approaches, such as generalized estimating equations and maximum likelihood, or, alternatively, the standard Mantel–Haenszel (MH) estimator, can be applied. However, while all these standard approaches are consistent under a large-stratum limiting model, they are not consistent under a sparse-data limiting model. In this paper, we propose a new MH estimator and a variance estimator that are both dually consistent: consistent under both large-stratum and sparse-data limiting situations. In a simulation study, the properties of the proposed estimators are confirmed, and the estimator is compared with standard marginal methods. The simulation study also considers the case when the homogeneity assumption of the odds ratios does not hold, and the asymptotic limit of the proposed MH estimator under this situation is derived. The results show that the proposed MH estimator is generally better than the standard estimator, and the same can be said about the associated Wald-type confidence intervals.
Keywords: Dual consistency; Generalized estimating equations; Mantel–Haenszel estimator; Marginal models; Subject-specific effects (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312000977
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:9:p:2705-2717
DOI: 10.1016/j.csda.2012.02.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().