A doubly optimal ellipse fit
A. Al-Sharadqah and
N. Chernov
Computational Statistics & Data Analysis, 2012, vol. 56, issue 9, 2771-2781
Abstract:
We study the problem of fitting ellipses to observed points in the context of Errors-In-Variables regression analysis. The accuracy of fitting methods is characterized by their variances and biases. The variance has a theoretical lower bound (the KCR bound), and many practical fits attend it, so they are optimal in this sense. There is no lower bound on the bias, though, and in fact our higher order error analysis (developed just recently) shows that it can be eliminated, to the leading order. Kanatani and Rangarajan recently constructed an algebraic ellipse fit that has no bias, but its variance exceeds the KCR bound; so their method is optimal only relative to the bias. We present here a novel ellipse fit that enjoys both optimal features: the theoretically minimal variance and zero bias (both to the leading order). Our numerical tests confirm the superiority of the proposed fit over the existing fits.
Keywords: Errors-In-Variables regression; Ellipse fitting; Conic fitting; Cramer–Rao bound; Bias reduction (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001107
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:9:p:2771-2781
DOI: 10.1016/j.csda.2012.02.028
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().