Dissimilarity measures and divisive clustering for symbolic multimodal-valued data
Jaejik Kim and
L. Billard
Computational Statistics & Data Analysis, 2012, vol. 56, issue 9, 2795-2808
Abstract:
Nowadays, most government agencies and local authorities regularly and routinely collect a large amount of data from censuses and surveys and officially publish them for public purposes. The most frequently used form for the publication is as statistical tables and it is usually not possible to access the raw data for those tables due to privacy issues. Under these situations, we have to analyze data using only those aggregated tables. These tables typically have formats summarized by ordinal or nominal items. Tables for quantitative variables have histogram-valued formats and those for qualitative variables are represented by multimodal-valued types. Both are classes of the so-called symbolic data. In this study, we propose dissimilarity measures and a divisive clustering algorithm for symbolic multimodal-valued data. In order to split a partition efficiently at each stage, the algorithm extends the monothetic method for binary data. The proposed method is verified by simulation studies and applied to a work-related nonfatal injury and illness dataset.
Keywords: Multimodal-valued data; Gowda–Diday dissimilarity measure; Ichino–Yaguchi dissimilarity measure; Divisive clustering (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001132
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:9:p:2795-2808
DOI: 10.1016/j.csda.2012.03.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().