EM algorithms for multivariate Gaussian mixture models with truncated and censored data
Gyemin Lee and
Clayton Scott
Computational Statistics & Data Analysis, 2012, vol. 56, issue 9, 2816-2829
Abstract:
We present expectation–maximization (EM) algorithms for fitting multivariate Gaussian mixture models to data that are truncated, censored or truncated and censored. These two types of incomplete measurements are naturally handled together through their relation to the multivariate truncated Gaussian distribution. We illustrate our algorithms on synthetic and flow cytometry data.
Keywords: Multivariate Gaussian mixture model; EM algorithm; Truncation; Censoring; Multivariate truncated Gaussian distribution (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001156
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:9:p:2816-2829
DOI: 10.1016/j.csda.2012.03.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().