Robust estimation for the covariance matrix of multivariate time series based on normal mixtures
Byungsoo Kim and
Sangyeol Lee
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 125-140
Abstract:
In this paper, we study the robust estimation for the covariance matrix of stationary multivariate time series. As a robust estimator, we propose to use a minimum density power divergence estimator (MDPDE) designed by Basu et al. (1998). To supplement the result of Kim and Lee (2011), we employ a multivariate normal mixture family instead of a multivariate normal family. As a special case, we consider the robust estimator for the autocovariance function of univariate stationary time series. It is shown that the MDPDE is strongly consistent and asymptotically normal under regularity conditions. Simulation results are provided for illustration. A real data analysis applied to the portfolio selection problem is also considered.
Keywords: Density-based divergence measures; Robust estimation; Autocovariance function; Consistency; Asymptotic normality (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002538
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:125-140
DOI: 10.1016/j.csda.2012.06.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().