EconPapers    
Economics at your fingertips  
 

Sparse sufficient dimension reduction using optimal scoring

Tao Wang and Lixing Zhu

Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 223-232

Abstract: Sufficient dimension reduction is a body of theory and methods for reducing the dimensionality of predictors while preserving information on regressions. In this paper we propose a sparse dimension reduction method to perform interpretable dimension reduction. It is designed for situations in which the number of correlated predictors is very large relative to the sample size. The new procedure is based on the optimal scoring interpretation of the sliced inverse regression method. As a result, the regression framework of optimal scoring facilitates the use of commonly used regularization techniques. Simulation studies demonstrate the effectiveness and efficiency of the proposed approach.

Keywords: High dimensionality; Linear discriminant analysis; Optimal scoring; Sliced inverse regression; Sparsity; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002563
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:223-232

DOI: 10.1016/j.csda.2012.06.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:223-232