Statistical inference and visualization in scale-space using local likelihood
Cheolwoo Park and
Jib Huh
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 336-348
Abstract:
SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for exploratory data analysis with statistical inference. Various SiZer tools have been developed in the last decade, but most of them are not appropriate when the response variable takes discrete values. In this paper, we develop a SiZer for finding significant features using a local likelihood approach with local polynomial estimators. This tool improves the existing one (Li and Marron, 2005) by proposing a theoretically justified quantile in a confidence interval using advanced distribution theory. In addition, we investigate the asymptotic properties of the proposed tool. We conduct a numerical study to demonstrate the sample performance of SiZer using Bernoulli and Poisson models using simulated and real examples.
Keywords: Generalized linear models; Local likelihood; Local polynomial smoothing; Scale-space; Statistical significance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002642
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:336-348
DOI: 10.1016/j.csda.2012.06.023
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().