Full bandwidth matrix selectors for gradient kernel density estimate
Ivana Horová,
Jan Koláček and
Kamila Vopatová
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 364-376
Abstract:
The most important factor in multivariate kernel density estimation is a choice of a bandwidth matrix. This choice is particularly important, because of its role in controlling both the amount and the direction of multivariate smoothing. Considerable attention has been paid to constrained parameterization of the bandwidth matrix such as a diagonal matrix or a pre-transformation of the data. A general multivariate kernel density derivative estimator has been investigated. Data-driven selectors of full bandwidth matrices for a density and its gradient are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated squared bias. The analysis of statistical properties shows the rationale of the proposed method. In order to compare this method with cross-validation and plug-in methods the relative rate of convergence is determined. The utility of the method is illustrated through a simulation study and real data applications.
Keywords: Asymptotic mean integrated square error; Multivariate kernel density; Unconstrained bandwidth matrix (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002782
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:364-376
DOI: 10.1016/j.csda.2012.07.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().