An efficient proposal distribution for Metropolis–Hastings using a B-splines technique
Wei Shao,
Guangbao Guo (),
Fanyu Meng and
Shuqin Jia
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 465-478
Abstract:
In this paper, we proposed an efficient proposal distribution in the Metropolis–Hastings algorithm using the B-spline proposal Metropolis–Hastings algorithm. This new method can be extended to high-dimensional cases, such as the B-spline proposal in Gibbs sampling and in the Hit-and-Run (BSPHR) algorithm. It improves the proposal distribution in the Metropolis–Hastings algorithm by carrying more information from the target function. The performance of BSPHR was compared with that of other Markov Chain Monte Carlo (MCMC) samplers in simulation and real data examples. Simulation results show that the new method performs significantly better than other MCMC methods.
Keywords: Efficient proposal distribution; Metropolis–Hastings algorithm; B-splines; Gibbs sampling; Markov Chain Monte Carlo (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002885
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:465-478
DOI: 10.1016/j.csda.2012.07.014
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().