EconPapers    
Economics at your fingertips  
 

An EM algorithm for continuous-time bivariate Markov chains

Brian L. Mark and Yariv Ephraim

Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 504-517

Abstract: We study properties and parameter estimation of a finite-state, homogeneous, continuous-time, bivariate Markov chain. Only one of the two processes of the bivariate Markov chain is assumed observable. The general form of the bivariate Markov chain studied here makes no assumptions on the structure of the generator of the chain. Consequently, simultaneous jumps of the observable and underlying processes are possible, neither process is necessarily Markov, and the time between jumps of each of the two processes has a phase-type distribution. Examples of bivariate Markov chains include the Markov modulated Poisson process and the batch Markovian arrival process when appropriate modulo counts are used in each case. We develop an expectation–maximization (EM) procedure for estimating the generator of a bivariate Markov chain, and we demonstrate its performance. The procedure does not rely on any numerical integration or sampling scheme of the continuous-time bivariate Markov chain. The proposed EM algorithm is equally applicable to multivariate Markov chains.

Keywords: Parameter estimation; EM algorithm; Continuous-time bivariate Markov chain; Markov modulated processes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002915
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517

DOI: 10.1016/j.csda.2012.07.017

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517