A simple generalisation of the Hill estimator
M. Fátima Brilhante,
M. Ivette Gomes and
Dinis Pestana
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 518-535
Abstract:
The classical Hill estimator of a positive extreme value index (EVI) can be regarded as the logarithm of the geometric mean, or equivalently the logarithm of the mean of order p=0, of a set of adequate statistics. A simple generalisation of the Hill estimator is now proposed, considering a more general mean of order p≥0 of the same statistics. Apart from the derivation of the asymptotic behaviour of this new class of EVI-estimators, an asymptotic comparison, at optimal levels, of the members of such class and other known EVI-estimators is undertaken. An algorithm for an adaptive estimation of the tuning parameters under play is also provided. A large-scale simulation study and an application to simulated and real data are developed.
Keywords: Bias estimation; Bootstrap methodology; Heavy tails; Optimal levels; Semi-parametric estimation; Statistics of extremes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002939
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:518-535
DOI: 10.1016/j.csda.2012.07.019
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().