EconPapers    
Economics at your fingertips  
 

A simple generalisation of the Hill estimator

M. Fátima Brilhante, M. Ivette Gomes and Dinis Pestana

Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 518-535

Abstract: The classical Hill estimator of a positive extreme value index (EVI) can be regarded as the logarithm of the geometric mean, or equivalently the logarithm of the mean of order p=0, of a set of adequate statistics. A simple generalisation of the Hill estimator is now proposed, considering a more general mean of order p≥0 of the same statistics. Apart from the derivation of the asymptotic behaviour of this new class of EVI-estimators, an asymptotic comparison, at optimal levels, of the members of such class and other known EVI-estimators is undertaken. An algorithm for an adaptive estimation of the tuning parameters under play is also provided. A large-scale simulation study and an application to simulated and real data are developed.

Keywords: Bias estimation; Bootstrap methodology; Heavy tails; Optimal levels; Semi-parametric estimation; Statistics of extremes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002939
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:518-535

DOI: 10.1016/j.csda.2012.07.019

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:518-535