One-step robust estimation of fixed-effects panel data models
M. Aquaro and
Pavel Cizek
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 536-548
Abstract:
The panel-data regression models are frequently applied to micro-level data, which often suffer from data contamination, erroneous observations, or unobserved heterogeneity. Despite the adverse effects of outliers on classical estimation methods, there are only a few robust estimation methods available for fixed-effects panel data. A new estimation approach based on two different data transformations is therefore proposed. Considering several robust estimation methods applied to the transformed data, the robust and asymptotic properties of the proposed estimators are derived, including their breakdown points and asymptotic distributions. The finite-sample performance of the existing and proposed methods is compared by means of Monte Carlo simulations.
Keywords: Breakdown point; Fixed effects; Panel data; Robust estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002757
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: One-Step Robust Estimation of Fixed-Effects Panel Data Models (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:536-548
DOI: 10.1016/j.csda.2012.07.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().