Assessing model adequacy in possibly misspecified quantile regression
Hohsuk Noh,
Anouar El Ghouch and
Ingrid Van Keilegom ()
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 558-569
Abstract:
Possibly misspecified linear quantile regression models are considered. A measure for assessing the combined effect of several covariates on a certain conditional quantile function is proposed. The measure is based on an adaptation to quantile regression of the famous coefficient of determination originally proposed for mean regression, and compares a ‘reduced’ model to a ‘full’ model, both of which can be misspecified. An estimator of this measure is proposed and its asymptotic distribution is investigated both in the non-degenerate and the degenerate case. The finite sample performance of the estimator is studied through a number of simulation experiments. The proposed measure is also applied to a data set on body fat measures.
Keywords: Coefficient of determination; Conditional quantiles; Lack-of-fit; Linear model; Prediction quality (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002940
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:558-569
DOI: 10.1016/j.csda.2012.07.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().