EconPapers    
Economics at your fingertips  
 

Smoothed rank correlation of the linear transformation regression model

Huazhen Lin and Heng Peng

Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 615-630

Abstract: The maximum rank correlation (MRC) approach is the most common method used in the literature to estimate the regression coefficients in the semiparametric linear transformation regression model. However, the objective function Gn(β) in the MRC approach is not continuous. The optimization of Gn(β) requires an extensive search for which the computational cost grows in the order of nd, where d is the dimension of X. Given the lack of smoothing, issues related to variable selection, the variance estimate and other inferences by MRC are not well developed in the model. In this paper, we combine the concept underlying the penalized method, rank correlation and smoothing technique and propose a nonconcave penalized smoothed rank correlation method to select variables and estimate parameters for the semiparametric linear transformation model. The proposed estimator is computationally simple, n1/2−consistent and asymptotically normal. A sandwich formula is proposed to estimate the variances of the proposed estimates. We also illustrate the usefulness of the methodology with real data from a body fat prediction study.

Keywords: Semiparametric transformation model; Variable selection; MRC; Variance estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002861
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:615-630

DOI: 10.1016/j.csda.2012.07.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:615-630