Parameter estimation for growth interaction processes using spatio-temporal information
Claudia Redenbach and
Aila Särkkä
Computational Statistics & Data Analysis, 2013, vol. 57, issue 1, 672-683
Abstract:
Methods for the parameter estimation for a spatio-temporal marked point process model, the so-called growth-interaction model, are investigated. Least squares estimation methods for this model found in the literature are only concerned with fitting the mark distribution observed in the data. These methods are unable to distinguish between models which have the same birth, death, interaction and growth functions and parameters but different arrival strategies for the points. Hence, they are extended such that the spatial structure of a point pattern is also taken into account. The suggested methods are evaluated in a simulation study and applied to a small data set from forestry.
Keywords: L-function; Least squares estimation; Logistic power-law function; Parameter estimation; Scots pines; Spatio-temporal marked point process (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731200309X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:57:y:2013:i:1:p:672-683
DOI: 10.1016/j.csda.2012.08.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().