Trend filtering via empirical mode decompositions
Azadeh Moghtaderi,
Patrick Flandrin and
Pierre Borgnat
Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 114-126
Abstract:
The problem of filtering low-frequency trend from a given time series is considered. In order to solve this problem, a nonparametric technique called empirical mode decomposition trend filtering is developed. A key assumption is that the trend is representable as the sum of intrinsic mode functions produced by the empirical mode decomposition (EMD) of the time series. Based on an empirical analysis of the EMD, an automatic procedure for selecting the requisite intrinsic mode functions is proposed. To illustrate the effectiveness of the technique, it is applied to simulated time series containing different types of trend, as well as real-world data collected from an environmental study (atmospheric carbon dioxide levels at Mauna Loa Observatory) and from a bicycle rental service (rental numbers of Grand Lyon Vélo’v).
Keywords: Empirical mode decomposition; Trend filtering; Adaptive data analysis; Monthly mean carbon dioxide cycle; Seasonality (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001812
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:114-126
DOI: 10.1016/j.csda.2011.05.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().