An unscented Kalman smoother for volatility extraction: Evidence from stock prices and options
Junye Li
Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 15-26
Abstract:
A smoothing algorithm based on the unscented transformation is proposed for the nonlinear Gaussian system. The algorithm first implements a forward unscented Kalman filter and then evokes a separate backward smoothing pass by only making Gaussian approximations in the state but not in the observation space. The method is applied to volatility extraction in a diffusion option pricing model. Both simulation study and empirical applications with the Heston stochastic volatility model indicate that in order to accurately capture the volatility dynamics, both stock prices and options are necessary.
Keywords: Nonlinear Gaussian state-space models; Nonlinear Kalman filters; Unscented Kalman smoother; Heston stochastic volatility model; Option pricing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002015
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:15-26
DOI: 10.1016/j.csda.2011.06.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().