EconPapers    
Economics at your fingertips  
 

Modeling time-dependent overdispersion in longitudinal count data

Fei Ye, Chen Yue and Ying Yang

Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 257-264

Abstract: Poisson regression is important in the analysis of longitudinal count data. However, the variance of responses is often much greater than the sample mean in practice, contradicting the Poisson model. To solve this overdispersion problem, negative binomial regression model was introduced by earlier researchers by adding another error term to the Poisson model. By default, the parameter of the additional error term, called the overdispersion parameter, is constant during the study period, but we find that it may fail in the research of epilepsy. Thus a formal likelihood ratio test is proposed and the test conforms that a time-dependent overdispersion phenomenon does exist. Then a mixed effect negative binomial model is proposed to take into account the time-dependent overdispersion, producing significantly better regression results compared with most earlier models. The proposed test and regression approach can easily be done by SAS PROC NLMIXED. The extensive simulation studies are conducted to evaluate the performance of the methods proposed.

Keywords: Time-dependent overdispersion; Negative binomial regression; Mixed effect model; SAS PROC NLMIXED (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731200312X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:257-264

DOI: 10.1016/j.csda.2012.08.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:257-264