EconPapers    
Economics at your fingertips  
 

Resistant estimates for high dimensional and functional data based on random projections

Ricardo Fraiman and Marcela Svarc

Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 326-338

Abstract: We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.

Keywords: Robust estimates; Location and scatter estimates; Trimming estimates (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003350
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:326-338

DOI: 10.1016/j.csda.2012.09.006

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:326-338