EconPapers    
Economics at your fingertips  
 

SURE-tuned tapering estimation of large covariance matrices

Feng Yi and Hui Zou

Computational Statistics & Data Analysis, 2013, vol. 58, issue C, 339-351

Abstract: Bandable covariance matrices are often used to model the dependence structure of variables that follow a nature order. It has been shown that the tapering covariance estimator attains the optimal minimax rates of convergence for estimating large bandable covariance matrices. The estimation risk critically depends on the choice of the tapering parameter. We develop a Stein’s Unbiased Risk Estimation (SURE) theory for estimating the Frobenius risk of the tapering estimator. SURE tuning selects the minimizer of SURE curve as the chosen tapering parameter. An extensive Monte Carlo study shows that SURE tuning is often comparable to the oracle tuning and outperforms cross-validation. We further illustrate SURE tuning using rock sonar spectrum data. The real data analysis results are consistent with simulation findings.

Keywords: Covariance matrix; Cross-validation; Frobenius norm; Operator norms; SURE; Tapering estimator (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003362
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:58:y:2013:i:c:p:339-351

DOI: 10.1016/j.csda.2012.09.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:339-351