Testing structural change in partially linear single-index models with error-prone linear covariates
Zhensheng Huang,
Zhen Pang and
Tao Hu
Computational Statistics & Data Analysis, 2013, vol. 59, issue C, 121-133
Abstract:
Motivated by an analysis of a real data set from Duchenne Muscular Dystrophy (Andrews and Herzberg, 1985), we propose a new test of structural change for a class of partially linear single-index models with error-prone linear covariates. Based on the local linear estimation for the unknowns in these semiparametric models, we develop a new generalized F-test statistics for the nonparametric part in the partially linear single-index models with error-prone linear covariates. Asymptotic properties of the newly proposed test statistics are proved to follow asymptotically the chi-squared distribution. The new Wilks’ phenomenon is unveiled in a class of semiparametric measure error models. Simulations are conducted to examine the performance of our proposed method. The simulation results are consistent with our theoretical findings. Real data examples are used to illustrate the proposed methodology.
Keywords: Chi-squared distribution; F-type test; Local linear method; Measure error; Single-index model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003520
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:59:y:2013:i:c:p:121-133
DOI: 10.1016/j.csda.2012.10.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().