Analysis of presence-only data via semi-supervised learning approaches
Junhui Wang and
Yixin Fang
Computational Statistics & Data Analysis, 2013, vol. 59, issue C, 134-143
Abstract:
Presence-only data occur in a classification, which consist of a sample of observations from the presence class and a large number of background observations with unknown presence/absence. Since absence data are generally unavailable, conventional semi-supervised learning approaches are no longer appropriate as they tend to degenerate and assign all observations to the presence class. In this article, we propose a generalized class balance constraint, which can be equipped with semi-supervised learning approaches to prevent them from degeneration. Furthermore, to circumvent the difficulty of model tuning with presence-only data, a selection criterion based on classification stability is developed, which measures the robustness of any given classification algorithm against the sampling randomness. The effectiveness of the proposed approach is demonstrated through a variety of simulated examples, along with an application to gene function prediction.
Keywords: Cross validation; Functional genomics; Stability; Support vector machine; Tuning (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731200357X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:59:y:2013:i:c:p:134-143
DOI: 10.1016/j.csda.2012.10.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().