EconPapers    
Economics at your fingertips  
 

Bayesian dynamic models for space–time point processes

Edna A. Reis, Dani Gamerman, Marina S. Paez and Thiago G. Martins

Computational Statistics & Data Analysis, 2013, vol. 60, issue C, 146-156

Abstract: In this work we propose a model for the intensity of a space–time point process, specified by a sequence of spatial surfaces that evolve dynamically in time. This specification allows flexible structures for the components of the model, in order to handle temporal and spatial variations both separately and jointly. These structures make use of state-space and Gaussian process tools. They are combined to create a richer class of models for the intensity process. This structural approach allows for a decomposition of the intensity into purely temporal, purely spatial and spatio-temporal terms. Inference is performed under a fully Bayesian approach, with the description of simulation-based and analytic methods for approximating the posterior distributions. The proposed methodology is applied to model the incidence of impulses in the small intestine, illustrated by a data-set obtained through an experiment conducted in cats, in order to understand the interaction between the nervous and digestive systems. This application illustrates the usefulness of the proposed methodology and shows it compares favorably against existing alternatives. The paper is concluded with a few directions for further investigation.

Keywords: Bayesian inference; Disease mapping; Dynamic models; Integrated Laplace; Monte Carlo Markov chain; Space–time point processes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003994
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:60:y:2013:i:c:p:146-156

DOI: 10.1016/j.csda.2012.11.008

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:146-156