Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data
Carolina Marchant,
Karine Bertin,
Víctor Leiva and
Helton Saulo
Computational Statistics & Data Analysis, 2013, vol. 63, issue C, 1-15
Abstract:
The kernel method is a nonparametric procedure used to estimate densities with support in R. When nonnegative data are modeled, the classical kernel density estimator presents a bias problem in the neighborhood of zero. Several methods have been developed to reduce this bias, which include the boundary kernel, data transformation and reflection methods. An alternative proposal is to use kernel estimators based on distributions with nonnegative support, as is the case of the Birnbaum–Saunders (BS), gamma, inverse Gaussian and lognormal models. Generalized BS (GBS) distributions have received considerable attention, due to their properties and their flexibility in modeling different types of data. In this paper, we propose, characterize and implement the kernel method based on GBS distributions to estimate densities with nonnegative support. In addition, we provide a simple method to choose the corresponding bandwidth. In order to evaluate the performance of these new estimators, we conduct a Monte Carlo simulation study. The obtained results are illustrated by analyzing financial real data.
Keywords: High frequency data; Kernel nonparametric method; Kurtosis; Monte Carlo method; R statistical computation language (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000285
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:63:y:2013:i:c:p:1-15
DOI: 10.1016/j.csda.2013.01.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().