Nonparametric estimation and bootstrap confidence intervals for the optimal maintenance time of a repairable system
Gustavo L. Gilardoni,
Maristela D. de Oliveira and
Enrico A. Colosimo
Computational Statistics & Data Analysis, 2013, vol. 63, issue C, 113-124
Abstract:
Consider a repairable system operating under a maintenance strategy that calls for complete preventive repair actions at pre-scheduled times and minimal repair actions whenever a failure occurs. Under minimal repair, the failures are assumed to follow a nonhomogeneous Poisson process with an increasing intensity function. This paper departs from the usual power-law-process parametric approach by using the constrained nonparametric maximum likelihood estimate of the intensity function to estimate the optimum preventive maintenance policy. Several strategies to bootstrap the failure times and construct confidence intervals for the optimal maintenance periodicity are presented and discussed. The methodology is applied to a real data set concerning the failure histories of a set of power transformers.
Keywords: Bounded intensity models; Constrained maximum likelihood estimation; Greatest convex minorant; Minimal repair; Poisson process; Power law process (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000509
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:63:y:2013:i:c:p:113-124
DOI: 10.1016/j.csda.2013.02.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().