EconPapers    
Economics at your fingertips  
 

Unsupervised data classification using pairwise Markov chains with automatic copulas selection

Stéphane Derrode and Wojciech Pieczynski

Computational Statistics & Data Analysis, 2013, vol. 63, issue C, 81-98

Abstract: The Pairwise Markov Chain (PMC) model assumes the couple of observations and states processes to be a Markov chain. To extend the modeling capability of class-conditional densities involved in the PMC model, copulas are introduced and the influence of their shape on classification error rates is studied. In particular, systematic experiments show that the use of wrong copulas can degrade significantly classification performances. Then an algorithm is presented to identify automatically the right copulas from a finite set of admissible copulas, by extending the general “Iterative Conditional Estimation” (ICE) parameters estimation method to the context considered. The unsupervised segmentation of a radar image illustrates the nice behavior of the algorithm.

Keywords: Pairwise Markov chain; Copulas; Iterative conditional estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300042X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:63:y:2013:i:c:p:81-98

DOI: 10.1016/j.csda.2013.01.027

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:63:y:2013:i:c:p:81-98