Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution
Qiang Guan,
Yincai Tang and
Ancha Xu
Computational Statistics & Data Analysis, 2013, vol. 64, issue C, 299-313
Abstract:
The Bayesian estimators for the unknown parameters of the bivariate Marshall–Olkin exponential distribution under noninformative priors have been considered and several reference priors have been derived. A class of priors is found by matching the coverage probability of one-side Bayesian credible intervals with the corresponding frequentist coverage probabilities. It is noted that some of the reference priors are also matching priors and the posterior distributions based on the reference priors and matching priors are proper. Closed forms of Bayesian estimators are obtained with respect to the quadratic loss function. Gibbs sampling is utilized to obtain the credible intervals and coverage probabilities of parameters. Comparisons in the efficiency of the maximum likelihood estimators and Bayesian estimators under different reference priors and matching priors for various sample sizes have been done by Monte Carlo simulations. A real data set is analyzed for illustrative purpose.
Keywords: Marshall–Olkin exponential distribution; Reference prior; Objective Bayesian analysis; Gibbs sampling; Matching prior (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001230
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:64:y:2013:i:c:p:299-313
DOI: 10.1016/j.csda.2013.03.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().