Minimum disparity estimation: Improved efficiency through inlier modification
Abhijit Mandal and
Ayanendranath Basu
Computational Statistics & Data Analysis, 2013, vol. 64, issue C, 71-86
Abstract:
Inference procedures based on density based minimum distance techniques provide attractive alternatives to likelihood based methods for the statistician. The minimum disparity estimators are asymptotically efficient under the model; several members of this family also have strong robustness properties under model misspecification. Similarly, the disparity difference tests have the same asymptotic null distribution as the likelihood ratio test but are often superior than the latter in terms of robustness properties. However, many disparities put large weights on the inliers, cells with fewer data than expected under the model, which appears to be responsible for a somewhat poor efficiency of the corresponding methods in small samples. Here we consider several techniques which control the inliers without significantly affecting the robustness properties of the estimators and the corresponding tests. Extensive numerical studies involving simulated data illustrate the performance of the methods.
Keywords: Disparity; Inliers; Power divergence; Small sample studies (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000868
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:64:y:2013:i:c:p:71-86
DOI: 10.1016/j.csda.2013.02.030
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().