EconPapers    
Economics at your fingertips  
 

Monitoring the covariance matrix with fewer observations than variables

Edgard M. Maboudou-Tchao and Vincent Agboto

Computational Statistics & Data Analysis, 2013, vol. 64, issue C, 99-112

Abstract: Multivariate control charts are essential tools in multivariate statistical process control. In real applications, when a multivariate process shifts, it occurs in either location or scale. Several methods have been proposed recently to monitor the covariance matrix. Most of these methods deal with a full rank covariance matrix, i.e., in a situation where the number of rational subgroups is larger than the number of variables. When the number of features is nearly as large as, or larger than, the number of observations, existing Shewhart-type charts do not provide a satisfactory solution because the estimated covariance matrix is singular. A new Shewhart-type chart for monitoring changes in the covariance matrix of a multivariate process when the number of observations available is less than the number of variables is proposed. This chart can be used to monitor the covariance matrix with only one observation. The new control chart is based on using the graphical LASSO estimator of the covariance matrix instead of the traditional sample covariance matrix. The LASSO estimator is used here because of desirable properties such as being non-singular and positive definite even when the number of observations is less than the number of variables. The performance of this new chart is compared to that of several Shewhart control charts for monitoring the covariance matrix.

Keywords: Covariance matrix; Penalized likelihood function; Average run length (ARL); Multistandardization; Cholesky decomposition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000844
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:64:y:2013:i:c:p:99-112

DOI: 10.1016/j.csda.2013.02.028

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:99-112