Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data
Cheng Wang,
Longbing Cao and
Baiqi Miao
Computational Statistics & Data Analysis, 2013, vol. 66, issue C, 140-149
Abstract:
This work studies the theoretical rules of feature selection in linear discriminant analysis (LDA), and a new feature selection method is proposed for sparse linear discriminant analysis. An l1 minimization method is used to select the important features from which the LDA will be constructed. The asymptotic results of this proposed two-stage LDA (TLDA) are studied, demonstrating that TLDA is an optimal classification rule whose convergence rate is the best compared to existing methods. The experiments on simulated and real datasets are consistent with the theoretical results and show that TLDA performs favorably in comparison with current methods. Overall, TLDA uses a lower minimum number of features or genes than other approaches to achieve a better result with a reduced misclassification rate.
Keywords: Feature selection; High-dimensional classification; Large p, small n; Linear discriminant analysis (LDA); Misclassification rate; Naive Bayes (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001333
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:66:y:2013:i:c:p:140-149
DOI: 10.1016/j.csda.2013.04.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().