M-type smoothing spline estimators for principal functions
Seokho Lee,
Hyejin Shin and
Nedret Billor
Computational Statistics & Data Analysis, 2013, vol. 66, issue C, 89-100
Abstract:
We propose a robust method for estimating principal functions based on MM estimation. Specifically, we formulate functional principal component analysis into alternating penalized M-regression with a bounded loss function. The resulting principal functions are given as M-type smoothing spline estimators. Using the properties of a natural cubic spline, we develop a fast computation algorithm even for long and dense functional data. The proposed method is efficient in that the maximal information from whole observed curve is retained since it partly downweighs abnormally observed individual measurements in a single curve rather than removing or downweighing a whole curve. We demonstrate the performance of the proposed method on simulated and real data and compare it with the conventional functional principal component analysis and other robust functional principal component analysis techniques.
Keywords: Alternating regression; Rank-one approximation; Functional principal component analysis; MM estimation; Natural cubic splines (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001242
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:66:y:2013:i:c:p:89-100
DOI: 10.1016/j.csda.2013.03.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().