Moment adjusted imputation for multivariate measurement error data with applications to logistic regression
Laine Thomas,
Leonard A. Stefanski and
Marie Davidian
Computational Statistics & Data Analysis, 2013, vol. 67, issue C, 15-24
Abstract:
In clinical studies, covariates are often measured with error due to biological fluctuations, device error and other sources. Summary statistics and regression models that are based on mis-measured data will differ from the corresponding analysis based on the “true” covariate. Statistical analysis can be adjusted for measurement error, however various methods exhibit a tradeoff between convenience and performance. Moment Adjusted Imputation (MAI) is a measurement error in a scalar latent variable that is easy to implement and performs well in a variety of settings. In practice, multiple covariates may be similarly influenced by biological fluctuations, inducing correlated, multivariate measurement error. The extension of MAI to the setting of multivariate latent variables involves unique challenges. Alternative strategies are described, including a computationally feasible option that is shown to perform well.
Keywords: Moment adjusted imputation; Multivariate measurement error; Logistic regression; Regression calibration (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313001588
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:67:y:2013:i:c:p:15-24
DOI: 10.1016/j.csda.2013.04.017
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().