EconPapers    
Economics at your fingertips  
 

Finding the optimal cut-point for Gaussian and Gamma distributed biomarkers

Matteo Rota and Laura Antolini

Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 1-14

Abstract: Categorization is often needed for clinical decision making when dealing with diagnostic (prognostic) biomarkers and a binary outcome (true disease status). Four common methods used to dichotomize a continuous biomarker X are compared: the minimum P-value, the Youden index, the concordance probability and the point closest-to-(0, 1) corner in the ROC plane. These methods are compared from a theoretical point of view under Normal or Gamma biomarker distributions, showing whether or not they lead to the identification of the same true cut-point. The performance of the corresponding non-parametric estimators is then compared by simulation. Two motivating examples are presented. In all simulation scenarios, the point closest-to-(0, 1) corner in the ROC plane and concordance probability approaches outperformed the other methods. Both these methods showed good performance in the estimation of the optimal cut-point of a biomarker. However, when methods do not lead to the same optimal cut-point, scientists should focus on which one is truly what they want to estimate, and use it in practice. In addition, to improve communicability, the Youden index or the concordance probability associated to the estimated cut-point could be reported to summarize the associated classification accuracy. The use of the minimum P-value approach for cut-point finding is strongly not recommended because its objective function is computed under the null hypothesis of absence of association between the true disease status and X. This is in contrast with the presence of some discrimination potential of X that leads to the dichotomization issue.

Keywords: Biomarkers; Optimal cut-point; Minimum P-value approach; Youden index; Concordance probability; Point closest-to-(0, 1) corner in the ROC plane (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002600
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:1-14

DOI: 10.1016/j.csda.2013.07.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:1-14