A GEE approach to determine sample size for pre- and post-intervention experiments with dropout
Song Zhang,
Jing Cao and
Chul Ahn
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 114-121
Abstract:
Pre- and post-intervention experiments are widely used in medical and social behavioral studies, where each subject is supposed to contribute a pair of observations. In this paper we investigate sample size requirement for a scenario frequently encountered by practitioners: all enrolled subjects participate in the pre-intervention phase of study, but some of them will drop out due to various reasons, thus resulting in missing values in the post-intervention measurements. Traditional sample size calculation based on McNemar’s test could not accommodate missing data. Through the GEE approach, we derive a closed-form sample size formula that properly accounts for the impact of partial observations. We demonstrate that when there are no missing data, the proposed sample size estimate under the GEE approach is very close to that under McNemar’s test. When there are missing data, the proposed method can lead to substantial saving in sample size. Simulation studies and an example are presented.
Keywords: Pre–post intervention; McNemar’s test; Sample size; Dropout (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300282X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:114-121
DOI: 10.1016/j.csda.2013.07.037
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().