Information criteria: How do they behave in different models?
Paulo C. Emiliano,
Mário J.F. Vivanco and
Fortunato S. de Menezes
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 141-153
Abstract:
The choice of the best model is crucial in modeling data, and parsimony is one of the principles that must guide this choice. Despite their broad use in model selection, the foundations of the Akaike information criterion (AIC), the corrected Akaike criterion (AICc) and the Bayesian information criterion (BIC) are, in general, poorly understood. The AIC, AICc and BIC penalize the likelihoods in order to select the simplest model. These criteria are based upon concepts of information and entropy, which are explained in this work, by focusing on a statistical approach. The three criteria are compared through Monte Carlo simulations, and the applications of these criteria are investigated in the selection of normal models, the selection of biological growth models and selection of time series models. For the simulation with normal models, all three criteria exhibited poor performance for a small sample size N=100 (particularly, when the variances are slightly different). For biological growth model simulations with a very small sample size N=13 the AIC and AICc showed better performance in comparison to the BIC. The simulation based on time series models produced results similar to the normal model simulations. For these simulations, the BIC exhibited superior performance, in some cases, in comparison to the other two information criteria (AIC and AICc) for a small sample size N=100, but in other cases, the BIC performed poorly, as did the AIC and AICc.
Keywords: Akaike information criterion (AIC); Entropy; Schwarz information criterion; BIC; Kullback–Leibler information; Selection of models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002776
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:141-153
DOI: 10.1016/j.csda.2013.07.032
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().