Parameter estimation of two-level nonlinear mixed effects models using first order conditional linearization and the EM algorithm
Liyong Fu,
Mingliang Wang,
Yuancai Lei and
Shouzheng Tang
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 173-183
Abstract:
Multi-level nonlinear mixed effects (ML-NLME) models have received a great deal of attention in recent years because of the flexibility they offer in handling the repeated-measures data arising from various disciplines. In this study, we propose both maximum likelihood and restricted maximum likelihood estimations of ML-NLME models with two-level random effects, using first order conditional expansion (FOCE) and the expectation–maximization (EM) algorithm. The FOCE–EM algorithm was compared with the most popular Lindstrom and Bates (LB) method in terms of computational and statistical properties. Basal area growth series data measured from Chinese fir (Cunninghamia lanceolata) experimental stands and simulated data were used for evaluation. The FOCE–EM and LB algorithms given the same parameter estimates and fit statistics for models that converged by both. However, FOCE–EM converged for all the models, while LB did not, especially for the models in which two-level random effects are simultaneously considered in several base parameters to account for between-group variation. We recommend the use of FOCE–EM in ML-NLME models, particularly when convergence is a concern in model selection.
Keywords: Cunninghamia lanceolata; Expectation–maximization algorithm; First order conditional expansion; Lindstrom and Bates algorithm; Simulated data; Two-level nonlinear mixed effects models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002831
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:173-183
DOI: 10.1016/j.csda.2013.05.026
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().