Finding multivariate outliers with FastPCS
Kaveh Vakili and
Eric Schmitt
Computational Statistics & Data Analysis, 2014, vol. 69, issue C, 54-66
Abstract:
The Projection Congruent Subset (PCS) is a new method for finding multivariate outliers. Like many other outlier detection procedures, PCS searches for a subset which minimizes a criterion. The difference is that the new criterion was designed to be insensitive to the outliers. PCS is supported by FastPCS, a fast and affine equivariant algorithm which is also detailed. Both an extensive simulation study and a real data application from the field of engineering show that FastPCS performs better than its competitors.
Keywords: Outlier detection; Multivariate statistics; Computational statistics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002661
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:69:y:2014:i:c:p:54-66
DOI: 10.1016/j.csda.2013.07.021
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().