Edge detection in sparse Gaussian graphical models
Shan Luo and
Zehua Chen
Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 138-152
Abstract:
In this paper, we consider the problem of detecting edges in a Gaussian graphical model. The problem is equivalent to the identification of non-zero entries of the concentration matrix of a normally distributed random vector. Following the methodology initiated in Meinshausen and Bühlmann (2006), we tackle the problem through regression models where each component of the random vector is regressed on the remaining components. We adapt a method called SLasso cum EBIC (sequential LASSO cum extended Bayesian information criterion) recently developed in Luo and Chen (2011) for feature selection in sparse regression models to suit the special nature of the concentration matrix, and propose two approaches, dubbed SR-SLasso and JR-SLasso, for the identification of non-zero entries of the concentration matrix. Comprehensive numerical studies are conducted to compare the proposed approaches with other available competing methods. The numerical studies demonstrate that the proposed approaches are more accurate than the other methods for the identification of non-zero entries of the concentration matrix.
Keywords: Edge detection; Extended Bayesian information criterion; Graphical model; Selection consistency; Sequential selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313003174
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:138-152
DOI: 10.1016/j.csda.2013.09.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().