Information criteria for Fay–Herriot model selection
Yolanda Marhuenda,
Domingo Morales and
María del Carmen Pardo
Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 268-280
Abstract:
The selection of an appropriate model is a fundamental step of the data analysis in small area estimation. Bias corrections to the Akaike information criterion, AIC, and to the Kullback symmetric divergence criterion, KIC, are derived for the Fay–Herriot model. Furthermore, three bootstrap-corrected variants of AIC and of KIC are proposed. The performance of the eight considered criteria is investigated with a simulation study and an application to real data. The obtained results suggest that there are better alternatives than the classical AIC.
Keywords: Small area estimation; Fay–Herriot model; Akaike information criterion; Kullback symmetric divergence criterion; Model selection; Bootstrap (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300340X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:268-280
DOI: 10.1016/j.csda.2013.09.016
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().