EconPapers    
Economics at your fingertips  
 

Information criteria for Fay–Herriot model selection

Yolanda Marhuenda, Domingo Morales and María del Carmen Pardo

Computational Statistics & Data Analysis, 2014, vol. 70, issue C, 268-280

Abstract: The selection of an appropriate model is a fundamental step of the data analysis in small area estimation. Bias corrections to the Akaike information criterion, AIC, and to the Kullback symmetric divergence criterion, KIC, are derived for the Fay–Herriot model. Furthermore, three bootstrap-corrected variants of AIC and of KIC are proposed. The performance of the eight considered criteria is investigated with a simulation study and an application to real data. The obtained results suggest that there are better alternatives than the classical AIC.

Keywords: Small area estimation; Fay–Herriot model; Akaike information criterion; Kullback symmetric divergence criterion; Model selection; Bootstrap (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731300340X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:70:y:2014:i:c:p:268-280

DOI: 10.1016/j.csda.2013.09.016

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:268-280